PROOF OF $$e^{i\theta} = \cos\theta + i\sin\theta$$ This proof was discovered by Euler in 1748. Today it is indispensable in topics such as AC circuits and damped harmonic motion. We know: $$e^{x} = \frac{x^{0}}{0!} + \frac{x^{1}}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{6!} + \dots$$ Therefore, $$e^{i\theta} = \frac{(i\theta)^0}{0!} + \frac{(i\theta)^1}{1!} + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \frac{(i\theta)^6}{6!} + \frac{(i\theta)^7}{7!} + \dots$$ Since $$i = \sqrt{-1}$$, $$e^{i\theta} = 1 + \frac{i\theta}{1!} - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} - \frac{\theta^6}{6!} - \frac{i\theta^7}{7!} \dots$$ $$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \dots\right) + i\left(\frac{\theta}{1!} - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \dots\right)$$ And we know that $$1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \dots = \cos \theta$$ and $\frac{\theta}{1!} - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \dots = \sin \theta$. Therefore, $e^{i\theta} = \cos \theta + i \sin \theta$ ## HERE'S SOMETHING ELSE ÜBER COOL The five most important numbers in mathematics in one equation: $$e^{i\pi} + 1 = 0$$ Source Mr. "Why-Math-is-My-Life" McMaster, Personal Communication, June 2004